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Abstract 

Background  H9N2 virus is mainly transmitted through the respiratory mucosal pathway, so mucosal immunity is 
considered to play a good role in controlling avian influenza infection. It is commonly accepted that no adequate 
mucosal immunity is achieved by inactivated vaccines, which was widely used to prevent and control avian influ-
enza virus infection. Thus, an improved vaccine to induce both mucosal immunity and systemic immunity is urgently 
required to control H9N2 avian influenza outbreaks in poultry farms.

Methods  In this study, we constructed a novel Lactococcus lactis (L. lactis) strain expressing a recombinant fusion 
protein consisting of the HA1 proteins derived from an endemic H9N2 virus strain and chicken IgY Fc fragment. We 
evaluated the immunogenicity and protective efficacy of this recombinant L. lactis HA1-Fc strain.

Results  Our data demonstrated that chickens immunized with L. lactis HA1-Fc strain showed significantly increased 
levels of serum antibodies, mucosal secretory IgA, T cell-mediated immune responses, and lymphocyte proliferation. 
Furthermore, following challenge with H9N2 avian influenza virus, chickens immunized with L. lactis HA1-Fc strain 
showed reduced the weight loss, relieved clinical symptoms, and decreased the viral titers and the pathological dam-
age in the lung. Moreover, oropharyngeal and cloacal shedding of the H9N2 influenza virus was detected in chicken 
immunized with L. lactis HA1-Fc after infection, the results showed the titer was low and reduced quickly to reach 
undetectable levels at 7 days after infection.

Conclusion  Our data showed that the recombinant L. lactis HA1-Fc strain could induce protective mucosal and sys-
temic immunity, and this study provides a theoretical basis for improving immune responses to prevent and control 
H9N2 virus infection.
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Background
Avian influenza virus (AIV) has brought great threat 
to the health of both poultry and human population 
worldwide. Avian influenza H9N2 virus (H9N2 AIV) 
pose a significant economic burden to the commercial 
poultry industry as they cause signs of mild respiratory 
illness and reduced egg production [1, 2]. It has been 
reported that some strains of H9N2 AIV can cause 
severe clinical symptoms and high mortality [3, 4]. At 
the same time, co-infection of H9N2 AIV with other 
pathogens can leads to more serious economic losses 
[3, 4]. Moreover, H9N2 AIV can directly infect humans 
and other mammal [5, 6]. The H9N2 AIV has played 
a significant role in the production of new influenza 
viruses, such as the H7N9, the H10N8, and H5N6, and 
these internal genes are mainly derived from the H9N2 
AIV [7], which shows the control of influenza virus is 
very important.

At present, vaccination with the inactivated vaccine is 
the major tool for the prevention and control of H9N2 
AIV in the poultry industry. Although inactivated vac-
cines are used in the poultry industry to prevent and 
control influenza, influenza still occurs frequently. That 
is to say, the inactivated vaccines cannot provide the 
desired protective effect; the possible reasons could be 
low mucosal immunity and cellular immunity. H9N2 AIV 
mainly spreads through respiratory mucosa, so mucosal 
immunization plays a crucial role in controlling avian 
influenza infection. Therefore, increasing mucosal or 
cellular immunity might be pivotal to relieve the limita-
tions of the inactivated vaccine immunization. Given that 
oral vaccine can induce mucosal immunity and systemic 
immunity, it is expected to be an effective way to prevent 
and control H9N2 avian influenza infection.

L. lactis is a kind of food-grade lactic acid bacteria, 
which is considered as an ideal host bacteria for expres-
sion of recombinant antigens of pathogenic micro-
organisms. Actic acid bacteria occurring naturally in 
the intestines of humans and animals can suppress the 
reproduction of harmful bacteria, keep the balance of 
gastrointestinal flora, and improve gastrointestinal func-
tion [8]. In addition, Lactic acid bacteria can activates 
immune cells, improves mucosal immune mechanisms 
and immune responses [9–11]. It has been reported that 
Lactic acid bacteria is used as the potential vehicle for 
protein delivery and induce effective antiviral immune 
responses, such as rotavirus spike-protein subunit VP8, 
infectious bursal disease virus VP2 and VP3 [12, 13]. 
Moreover, L. lactis was widely used for mucosal delivery 
of therapeutic proteins [9, 14]. So the recombinant pro-
teins expressed by L. lactis vehicle can induced mucosal 
and systemic immunity and well protect the challenge 
animals [15]. So as a safe oral live vaccine delivery carrier, 

L. lactis has a potential application considering its excel-
lent immune effect.

Mammalian IgG molecules can be divided into two 
Fab fragments, which combine highly variable anti-
gens, and one Fc regions, which recruits and activates 
immune effector leukocytes. The Fc fragment can bind 
to its receptor FcR widely expressed on the surface of 
antigen-presenting cells and mucosal epithelial cells, 
and the interactions of Fc with activating FcR can acti-
vate macrophages, mediate antigen capture, increases 
the efficiency of the antigen-presenting cells for anti-
gen presentation and triggers effector functions for the 
immune response [16, 17]; it can also strongly influence 
the production of cytokine by stimulated macrophages 
[18]. The most striking feature of macrophage activation 
is an increase in phagocytic activity, which contributes 
the antigen presentation to T cells to triggering adaptive 
immune responses [19]. In avian species, although the Fc 
segments of IgY is different in structure structures, IgY is 
similar to mammalian IgG in terms of functionality [20, 
21]. It has been reported that the linked IgY Fc medi-
ated the interaction with macrophages and increases the 
efficiency of antigen-processing, thereby improving the 
immune response induced by the antigen [20].

The neonatal Fc receptor (FcRn) of IgG is expressed 
on the surfaces of antigen presenting cells and mucosal 
epithelial cells in adulthood. FcRn can transport mater-
nal IgG to the newborn before the immune system of 
the newborn matures, so that the newborn can acquire 
immune defense against pathogens to resist external dis-
eases [22]. Numerous reports have confirmed that target-
ing protective antigens to FcRn can increased humoral 
and cellular immune responses [23–25]. In avian spe-
cies, the Fc receptor with the requisite properties for 
IgY transport from yolk to embryo, named FcRY, were 
isolated and characterized from chicken yolk sac [26]. It 
was reported that besides the yolk sac membrane, FcRY 
expression was also observed in most tissues, incluing 
liver, ovary, oviduct, ileum, and spleen [26]. This may 
reflect the role of IgY is similar to FcRn’s function to IgG 
in mammals [27, 28]. So, in our study, we targeted pro-
tective antigens of H9N2 AIV to FcRY to explore whether 
the linked chicken IgY Fc fragment fusion could increase 
immune responses.

Hemagglutinin is the main surface antigen of influenza 
A virus and the primary target for the production of spe-
cific neutralizing antibodies [29–31]. So HA antibody is 
particularly important in the fight against infection and 
disease and is a crucial target for vaccine development. 
HA is a homotrimer, each monomer is synthesized as a 
single polypeptide (HA0) that is split into two HA1 and 
HA2 subunits by matriptase in host cells [32, 33]. The 
N-terminal of HA1 forms a globular head structural 
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domain; the HA1 domain contains many antigenic deter-
minants that stimulate the production and binding of 
neutralizing antibodies. HA2 forms a stem structure; 
HA2 domain anchored to the viral envelope can fuses 
the virus envelope with the cell membrane and release 
the nucleocapsid of the virus particle [34]. In a word, the 
sequence of HA1 can stimulate neutralizing antibodies 
production; therefore, in this study the oral vaccine based 
on the region of HA1 is being considered.

In this study, we used the L. lactis MG1363 to express a 
fusion protein containing the chicken IgY Fc and HA1 of 
H9N2 AIV. The immunogenicity of this recombinant L. 
lactis strain was then evaluated. The protective effect of 
this recombinant L. lactis strain against H9N2 AIV chal-
lenge following oral immunization was also evaluated 
aiming to explore a complementary method for the pre-
vention and control of H9N2 subtype AIV.

Materials and methods
Bacteria, virus, and inactivated vaccines
The H9N2 influenza A/pigeon/Hebei/02/2017 virus 
(H9N2 virus) strain was isolated (GenBank accession 
numbers Mk995886-Mk995893) from the intestinal tract 
of a pigeon in Hebei Province and stored in Hebei North 
University. L. lactis MG1363-pMG36e (L. lactis), L. lactis 
MG1363-pMG36e-HA1 (L. lactis HA1) was stored and 
prepared as a vaccine candidate from a L. lactis MG1363 
system in Hebei North University. For inactivated H9N2 
vaccine production, A/pigeon/Hebei/02/2017 virus was 
propagated in the allantoic cavities of 10-day-old SPF 
embryonated eggs. Allantoic fluid was harvested 72  h 
after inoculation and treated with formalin (final concen-
tration of 0.2%) for 24 h at room temperature. Then the 
allantoic fluid was emulsified in Montanide ISA70 (SEP-
PIC) at a ratio of 30:70 (v/v).

Construction of recombinant L. lactis
To recombine HA1 of A/pigeon/Hebei/02/2017 virus 
fused to IgY Fc at the N-terminus, the recombinant 
plasmids pMG36e-HA1-Fc was constructed, and 
the HA1 gene and the IgY Fc gene were connected 
by a fifteen-amino acid linker (3XGGGGS). The IgY 
Fc fragment of chicken was obtained from GenBank 
(X07174.1). With HA1-Fc gene for the selected target 
gene, SalI and HindIII restriction enzyme cutting sites 
were added and were chemically synthesized by Gene 
Wiz, Inc. (Suzhou, China). Then the HA1-Fc gene was 
cloned into pMG36e vector by digestion with the SalI 
and HindIII restriction sites to create pMG36e-HA1-
Fc. Subsequently, the recombinant plasmids were trans-
formed into L. lactis MG1363 by electroporation, then 
the clones were sequenced in Gene Wiz, Inc. (Suzhou, 
China), and the confirmed positive recombinant L. 

lactis MG1363 was named L. lactis MG1363-pMG36e-
HA1-Fc(L. lactis HA1-Fc).

Western blotting analysis
To examine HA1-Fc expression, the recombinant L. 
lactis and L. lactis HA1-Fc were cultured in MRS 
medium supplemented with 10  μg/ml erythromycin. 
When an OD600 = 0.8 was reached, the bacteria were 
harvested by centrifugation and resuspended in TBS 
buffer, and then were disrupted with sonication. The 
cell lysate was used to detect the presence of recom-
binant protein. Proteins were separated by SDS-PAGE 
and transferred to PVDF membranes. The presence of 
the fusion protein was detected using rabbit polyclonal 
to Avian Influenza A H9N2 Hemagglutinin antibody 
(Novus Biologicals) followed by horseradish peroxi-
dase-labeled goat anti-rabbit IgG (abcam). Visualiza-
tion of the immunobinding was conducted by enhanced 
chemiluminescence Western blotting detection system 
(Amersham Pharmacia Biotech).

Vaccination and challenge
One-day-old specific-pathogen-free chickens were ran-
domly divided into five treatment groups of 25 chick-
ens each, PBS group, L. lactis group, L. lactis HA1 
group, L. lactis HA1-Fc group, H9N2 inactivated vac-
cine group. PBS group of chickens were orally immu-
nized with PBS (0.2  mL/chicken). L. lactis group, L. 
lactis HA1 group, L. lactis HA1-Fc group of chickens 
were orally immunized with 109  cfu/mL of the L. lac-
tis MG1363-pMG36e, L. lactis MG1363-pMG36e-
HA1 and L. lactis MG1363-pMG36e-HA1-Fc(0.2  mL/
chicken), respectively. H9N2 inactivated vaccine group 
of chickens received intramuscular injections of H9N2 
inactivated vaccine (0.2  mL/chicken). Chickens in all 
groups except the inactivated vaccine group received a 
first vaccination at 1, 2, and 3 days and a booster vac-
cination at 14, 15 and 16 days. Chickens in the inacti-
vated vaccine group were immunized on the first day. 
Then sera, BALF, spleen, intestinal samples, and feces 
were collected from immunized chickens on 10  days 
after the first and boosting vaccination for antibody 
assays, cytokine detection and lymphocyte proliferation 
assays. Then, all groups of chickens were intranasally 
challenged with 106.0 EID50 of A/pigeon/Hebei/02/2017 
AIV in 0.1 ml of PBS on day 24, and clinical signs, the 
body weight, protection rates, viral shedding, pulmo-
nary pathological changes and lung tissue virus titers of 
each group were analyzed. The challenge test with live 
H9N2 virus was done in the poultry isolators with Hepa 
Filter.
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HI assay
Sera were collected from all groups of chickens at 10 days 
after first and boosting vaccination. Hemagglutination 
Inhibition (HI) antibody titers of serum antibodies were 
determined following the previous study [35]. The high-
est serum dilution capable of preventing hemagglutina-
tion was scored as the HI-titer.

Mucosal SIgA and serum IgG antibodies assays
Sera, BALF and feces samples were collected from all 
groups of chickens at 10 days after first and boosting vac-
cination. The sIgA antibody levels were measured using 
the Chicken sIgA ELISA Kit (Lengton Bioscience Co., 
LTD, Shanghai, China), according to the manufacturer’s 
protocol for BALF and feces samples. Serum-specific 
IgG antibody levels were detected by the indirect ELISA 
method, according to a previously reported method 
[36]. Briefly, 96 well plates were coated with 1  mg/
ml of synthetic HA1-peptide (23 amino acids, 2–26, 
KICIGYQSTNSTETVDTLTENNVPV, synthesized by 
Sangon Biotech (Shanghai) Co., Ltd, China) specific-
ity H9N2 subtype AIV HA1 protein, in 50  mM sodium 
bicarbonate buffer, and incubated overnight at 4 °C. After 
blocking, serum samples were loaded on peptide coated 
plates and incubated for 1 h at 37 °C. Subsequently, plates 
were washed and incubated with goat anti-chicken IgG-
HRP conjugates (SigmaAldrich, USA) for another 1 h at 
37 °C. The color reaction was developed with TMB, and 
absorbances were read at OD 450 nm. The optical density 
represented total mucosal sIgA and serum IgG specific 
for HA1-Fc. For comparison between groups, the aver-
ages of A450 values of different sera were analyzed [37].

Real‑time PCR assays for detection of intestinal mucosal 
cytokines
IL-2, IL-4, and IFN-γ in Intestinal samples were meas-
ured by real-time PCR. Total RNA was extracted using 
Trizol reagent (Invitrogen). cDNA was synthesized from 
RNA with cDNA Reverse Transcription Kit (Applied Bio-
systems). PCR amplification assays were performed with 
a SYBR Premix Ex Taq II kit (TaKaRa) on an ABI 7300 
Real-Time PCR system (Applied Biosystems). The target 
gene expression was normalized on the basis of β-Actin 
expression. The 2−ΔΔCT method was used to normalize 
the data. The experimental primers were listed in Table 1 
[15, 38].

Proliferation assay
To detect splenic lymphocyte proliferation of vaccinated 
chickens, lymphocytes were seeded in 96-well plates at 
2 × 105 cells/ml, the cultures were stimulated for 48  h 
with 5  μg/ml of phytohemagglutinin (PHA, Sigma) as 

positive control, 5  μg/ml of synthetic HA1 peptide as 
specific antigen, or RPMI 1640 as negative control, and 
proliferation rate of the splenic lymphocyte was detected 
by Cell Proliferation ELISA BrdU Kit (Roche, Germany), 
according to manufacturer’s protocol. Absorbances were 
read at 450 nm. Results were expressed as a stimulation 
index (SI), which was described as the ratio of the aver-
age OD of antigen-stimulated cells to the average OD of 
non-stimulated cells, and the stimulation index is used 
to express a proliferative response against synthetic HA1 
peptide of splenic lymphocyte.

Analysis of protective immune responses
Challenged chickens were monitored for clinical symp-
toms and mortality, and changes in body weights were 
recorded. To detect viral shedding, cloacal and oro-
pharyngeal swabs were collected from challenged chick-
ens on days 2, 4, and 7 post-challenges and suspended in 
1  mL of PBS. These time points represent the peak for 
oropharyngeal and cloacal shedding [39, 40]. Moreover, 
five randomly-selected chickens from each group were 
sacrificed and lung tissues were collected, on days 7 post-
challenges. The viral titers in the lungs were measured by 
EID50. Pulmonary pathological changes was visualized by 
hematoxylin and eosin staining.

Statistical analysis
Statistical analysis was performe International Immunop-
harmacology d with the SPSS statistical software package 
for Windows, version 18.0 (SPSS, Inc., Chicago, IL, USA). 
All data are presented as the means ± SD. Statistically 
significant differences among groups were calculated by 
one-way ANOVA followed by Tukey’s multiple compari-
sons test. P < 0.05 was considered significant.

Results
Identification of recombinant proteins
HA1-Fc gene was cloned into the expression vector 
pMG36e and verified by sequencing, and the recombi-
nant plasmids pMG36e-HA1-Fc was transformed into L. 
lactis MG1363 by electroporation. The expressed protein 
bands corresponding to 74  kDa in the positive recom-
binant L. lactis HA1-Fc were observed through western 

Table 1  The primers used in this study

Primer Sense (5′-3′) Anti-sense (5′-3′)

IL-2 CTC​GGA​GCT​CTG​CAG​CGT​GT TCC​ACC​ACA​GTT​GCT​GGC​TCATC​

IL-4 CCA​CGG​AGA​ACG​AGC​TCA​TC GAG​AAC​CCC​AGA​CTT​GTT​
CTTCA​

IFN-γ ACA​CTG​ACA​AGT​CAA​AGC​CGC​ AGT​CGT​TCA​TCG​GGA​GCT​TG

β-Actin CAA​CAC​AGT​GCT​GTC​TGG​
TGGTA​

ATC​GTA​CTC​CTG​CTT​GCT​GATCC​
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blotting. The result confirmed the expression of the 
recombinant HA1-Fc fusion proteins and the good reac-
togenicity to the Avian Influenza A Hemagglutinin anti-
body (Fig. 1).

HI antibody levels induced by L. lactis HA1‑Fc
The recombinant L. lactis HA1-Fc was used as an oral 
vaccine to immunize SPF chickens. Then HI antibody 
levels were measured to determine whether the L. lac-
tis HA1-Fc could stimulate the body to produce specific 
antibodies. The result showed that chickens orally vacci-
nated with L. lactis HA1-Fc had obviously higher HI anti-
body levels than the chickens that were orally immunized 
with L. lactis or PBS (P < 0.01). Moreover, HI antibody 
levels in chickens orally immunized with L. lactis HA1-
Fc increased significantly compared with chickens immu-
nized with L. lactis HA1 (P < 0.01). Our data also showed 
that although vaccination with the inactivated vaccine 
induced high HI antibody, no significant differences in 
HI antibody were detected in chickens immunized with 
inactivated vaccine and L. lactis HA1-Fc (Fig.  2A). This 
result proved that recombinant L. lactis HA1-Fc can 
stimulate the body to produce specific antibodies and Fc 

fragment plays an important role in the production of 
specific antibodies (Fig. 2A).

The specific IgG Levels enhanced by L. lactis HA1‑Fc
To investigate the specific IgG levels in chickens after oral 
vaccination with L. lactis HA1-Fc, the serum samples 
from various groups of chickens were detected by indi-
rect ELISA. As shown in Fig.  2B, compared with the L. 
lactis group and PBS group, the L. lactis HA1-Fc group 
had a much higher specific IgG levels after oral immu-
nization (P < 0.001). Notably, the specific IgG titers in 
the serum from chickens orally vaccinated with L. lac-
tis HA1-Fc was increased obviously compared with the 
L. lactis HA1 group (P < 0.01). As with HI antibody lev-
els, there was no obvious difference in specific IgG titers 
between the L. lactis HA1-Fc group and the inactivated 
vaccine group (P < 0.01). Therefore, our data can infer 
that L. lactis HA1-Fc is capable of stimulating a strong 
humoral immune response in chickens.

SIgA antibodies in the feces and BALF 
following vaccination
To evaluate whether recombinant L. lactis HA1-Fc can 
induce body mucosal immunity, sIgA antibodies of all 
groups of chicken was measured after each immunization 
(Fig. 3). The results showed that intestinal sIgA levels in 
the L. lactis HA1-Fc vaccinated group were higher obvi-
ously than those of the PBS vaccinated group and L. lactis 
vaccinated group (P < 0.01), and chicken immunized with 
L. lactis HA1-Fc showed higher titer of sIgA antibodies 
compared with chickens immunized with L. lactis HA1 
(P < 0.01) (Fig. 3A). Moreover, sIgA levels in the L. lactis 
HA1-Fc vaccinated group were also significantly higher 
compared with the inactivated vaccine group (P < 0.01) 

Fig. 1  Western blot analyses of L. lactis HA1-Fc. Western blotting 
identification of the recombinant proteins with the goat anti-rabbit 
HA antibody. Lane M is protein molecular size page ruler; Lane 1 is 
the strain of L. lactis; Lane 2 is the strain of L. lactis HA1-Fc

Fig. 2  HI Antibody levels and the specific IgG levels induced by L. lactis HA1-Fc. A Antibody titers determined by HI assay after the chickens 
were vaccinated with PBS, L. lactis, L. lactis HA1, L. lactis HA1-Fc and inactivated H9N2 vaccine. B The antigen specific IgG titers of chickens after 
vaccination detected by indirect ELISA. The data were showed as means ± SD (n = 5). **P < 0.01 relative to PBS and L. lactis. ##P < 0.01 relative to L. 
lactis HA1
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(Fig. 3A). SIgA levels in BALF showed a similar trend to 
intestinal sIgA levels (Fig. 3B). SIgA levels in the L. lac-
tis HA1-Fc vaccinated group were significantly higher 
than those in the PBS vaccinated and L. lactis vaccinated 
groups (P < 0.01), and chicken immunized with L. lactis 
HA1-Fc showed higher titer of sIgA antibodies compared 
with chickens immunized with L. lactis HA1 and inacti-
vated vaccine (P < 0.01). Moreover, there was statistically 
significant difference in the induced sIgA antibodies in 
the feces and BALF samples between L. lactis and PBS 
immunized groups of chicken after immunization. There-
fore, Lactococcus lactis can improves mucosal immune 
mechanisms and is a good vehicle for protein delivery. L. 
lactis HA1-Fc could induce enhanced mucosal response.

Intestinal mucosal cytokines induced by L. lactis HA1‑Fc
Cytokines are crucial for fighting off infections and are 
involved in immune responses, IL-2 and INF-γ primar-
ily stimulate cell-mediated immune response, and IL-4 
primarily stimulate antibody production and mediates 
humoral immune responses [21]. Therefore, in this study 
intestinal tissues were collected from all chickens and 
mucosal cytokines levels were measured by real-time 
PCR. As shown in Fig. 4, levels of IL-2, IFN-γ and IL-4 
(as a marker of Th1 and Th2, respectively) in the L. lactis 
HA1-Fc vaccinated group were significantly higher than 
those in the L. lactis vaccinated group and PBS vaccinated 
group, and the L. lactis HA1-Fc vaccinated group showed 
significantly increased levels of all three cytokines com-
pared with the L. lactis HA1 vaccinated groups (P < 0.01). 
There were higher levels of cytokines of IL-2, IL-4 and 
IFN-γ in the inactivated vaccine groups, but chickens 
immunized with L. lactis HA1-Fc showed higher levels of 
IL-2, IL-4 and IFN-γ than those immunized with inacti-
vated vaccine (P < 0.05). Moreover, there was statistically 

significant difference in the induced mucosal cytokines 
levels between L. lactis and PBS immunized groups 
of chicken after immunization (Fig.  4). Therefore, the 
results indicated L. lactis HA1-Fc fragment significantly 
promoted the secretion of cytokines in chickens. Lac-
tococcus lactis can activate immune cells and improves 
immune responses [9–11]. The levels of IL-2 and IFN-γ 
in chicken immunized with L. lactis HA1-Fc were greater 
than IL-4 levels, which showed the greater Th1-type than 
Th2-type immune response in chicken.

Proliferation assay
The cellular immune response was examined by Cell Pro-
liferation ELISA BrdU Kit.

The results showed an enhanced T-cell proliferative 
response to HA1 peptide was observed in the groups 
vaccinated with L. lactis HA1, L. lactis HA1-Fc or inac-
tivated vaccine when stimulated with synthetic HA1 
peptide, whereas the chickens immunized with PHA or 
RPMI did not respond to the HA1 peptide (Fig. 5). Stim-
ulation index in L. lactis HA1-Fc group was significantly 
higher than those in groups L. lactis and PBS group. 
Notably, the group L. lactis HA1-Fc showed signifi-
cantly higher stimulation index than group L. lactis HA1 
after the first immunization and boost immunization 
(P < 0.05). Moreover, there were higher stimulation index 
in the inactivated vaccine groups, but chickens immu-
nized with L. lactis HA1-Fc showed higher stimulation 
index than chicken immunized with inactivated vaccine 
(P < 0.05). These results suggested that L. lactis HA1-Fc 
significantly promoted immune responses in chicken.

Protective effect of L. lactis HA1‑Fc on H9N2 subtype of AIV
To evaluate the protective effect of recombinant L. lac-
tis HA1-Fc strain on the H9N2 subtype AIV, clinical 

Fig. 3  Mucosal antibody levels induced by L. lactis HA1-Fc. SIgA antibodies in the feces (A) and BALF (B) were assessed by ELISA after the chickens 
were vaccinated with PBS, L. lactis, L. lactis HA1, L. lactis HA1-Fc and inactivated H9N2 vaccine. The data were showed as means ± SD (n = 5). 
▲▲P < 0.01 relative to PBS. **P < 0.01 relative to PBS and L. lactis. ##P < 0.01 relative to L. lactis HA1. $$P < 0.01 relative to L. lactis HA1-Fc
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signs, the body weight, protection rates, viral shedding, 
pulmonary pathological changes and lung tissue virus 
titers of each group were statistically analyzed after the 
challenge experiment. From day 3 after viral challenges, 
all the challenged, PBS and L. lactis vaccinated chicken 
exhibited apparent clinical signs including: depression, 

poor appetite, ruffled feathers, respiratory sounds, and 
eye redness from 2 to 8 days post-challenge. About half 
of chickens in group L. lactis HA1 showed clinical signs, 
and three-quarters of chickens in group L. lactis HA1-
Fc showed no clinical symptoms. Moreover, the clinical 
signs were delayed for 1–2 days in the chicken vaccinated 

Fig. 4  IL-2, IL-4, and IFN-γ levels in intestinal tissues induced by L. lactis HA1-Fc. Chickens were vaccinated with PBS, L. lactis, L. lactis HA1, L. lactis 
HA1-Fc and inactivated H9N2 vaccine, respectively, then intestinal tissues were collected. IL-2 (A), IFN-γ (B), and IL-4 (C) were detected via real-time 
PCR. The data were showed as means ± SD (n = 5). ΔΔP < 0.01 relative to PBS. **P < 0.01 relative to PBS and L. lactis. ##P < 0.01 relative to L. lactis HA1. 
$$P < 0.01 relative to L. lactis HA1-Fc

Fig. 5  T cells proliferation assay. T cells proliferation was examined by Cell Proliferation ELISA BrdU Kit, and results were expressed as a stimulation 
index (SI) of chickens vaccinated with PBS, L. lactis, L. lactis HA1, L. lactis HA1-Fc and inactivated H9N2 vaccine. The data were showed as means ± SD 
(n = 5). **P < 0.01 relative to PBS and L. lactis. ##P < 0.01 relative to L. lactis HA1. $$P < 0.01 relative to L. lactis HA1-Fc
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with the L. lactis HA1-Fc and L. lactis HA1, in which the 
chicken showed mild clinical signs for 2–3 days, and the 
clinical signs in the chicken vaccinated with the L. lactis 
HA1-Fc were milder than those vaccinated with the L. 
lactis HA1. There was no significant difference in clini-
cal signs between chicken immunized with L. lactis HA1-
Fc or inactivated vaccine. By day 5 post-challenge, the 
chickens immunized with L. lactis HA1-Fc showed some 
recovery. On day 7 post-challenge, chickens were behav-
ing normally and their activity and appetite returned to 
normal levels.

The body weights of the L. lactis group and PBS group 
exhibited downward trends after H9N2 virus infec-
tion, and both were obviously lower than the other three 
groups (P < 0.01) (Fig.  6). The chicken in L. lactis HA1-
Fc group showed less weight loss than that observed 
for the chicken in L. lactis HA1 group, but the weight 
changes between these two groups were not statistically 
significant. Moreover, there was no significant difference 
between the L. lactis HA1-Fc group and the inactivated 
vaccines group (P > 0.05).

None of the chickens immunized with L. lactis HA1-
Fc or inactivated vaccines died after infection with H9N2 
avian influenza virus, whereas five of the 25 chickens 
immunized with PBS and L. lactis and two of the 25 
chickens immunized with L. lactis HA1 died from the 
disease.

To investigate virus shedding, oropharyngeal and cloa-
cal swabs were collected from all chickens on days 2, 4 
and 7 after infection with H9N2 avian influenza virus, 
and virus titration was measured in MDCK cells. The 
result showed that all chicken in PBS, L. lactis and L. 
lactis HA1 groups showed respiratory viral replica-
tion, and several chicken in L. lactis HA1-Fc groups did 
not showed respiratory viral replication at days 2, and 

4 post-challenges. The chicken vaccinated with L. lactis 
HA1-Fc had overall significantly lower oropharyngeal 
and cloacal viral shedding than did the challenged PBS, 
L. lactis or L. lactis HA1 immunized chickens (P < 0.01). 
At day 7 post-challenge, no viruses were isolated from 
oropharyngeal swabs of the chicken vaccinated with L. 
lactis HA1-Fc and inactive vaccine; whereas, viruses were 
isolated from oropharyngeal swabs of the other infected 
chickes. As far as the periods of viral shedding was con-
cerned, the chicken vaccinated with L. lactis HA1-Fc had 
lower periods of virus replication (Fig. 7).

Histopathologic evaluation
To further evaluate the protective effect of the L. lac-
tis HA1-Fc, pathological changes in chicken from each 
group were assessed. As illustrated in Fig. 8A–E, chicken 
in PBS group and L. lactis group showed significantly 
pathological changes, including increased blood, and 
lymphatic cells; hyperemia; the lung chamber collapsed, 
and the pulmonary epithelial cells detached.

By contrast, there were only minor pathological 
changes in the L. lactis HA1-Fc group and the inactivated 
vaccine group. Moreover, the pathological changes in L. 
lactis HA1-Fc group were significantly lighter than those 
in L. lactis HA1 group. The results confirmed that oral-
administration L. lactis HA1-Fc could provide protec-
tion against the H9N2 AIV virus via reducing pulmonary 
pathology.

Lung tissue virus titers assays
To evaluate the protective effect of recombinant L. lac-
tis HA1-Fc strain on the H9N2 subtype AIV, lung tis-
sue virus titers of each group were detected. The results 
showed that the lung virus titer in L. lactis HA1-Fc group 
was obviously lower than those in the PBS and L. lactis 
group (Fig.  8F). Moreover, compared with the L. lactis 
HA groups, the lung virus titer in L. lactis HA1-Fc group 
was also significantly reduced (P < 0.01). There was no 
significant difference in viral titer between L. lactis HA1-
Fc group and inactivated vaccines group.

Discussion
Avian influenza viruses (AIVs) have brought great threat 
to the poultry industry. At present, vaccination with inac-
tivated vaccines for all poultry was the most common 
strategy for prevention and control of avian influenza. 
However, the immunogenicity of current AIV inactivated 
vaccines that mainly induce humoral immunity was lim-
ited. H9N2 influenza virus is mainly transmitted through 
the respiratory mucosal pathway, so mucosal immunity is 
considered to play a good role in controlling avian influ-
enza infection. In this study, we fused IgY Fc and HA pro-
tective antigen genes of H9N2 AIV, thus constructing the 

Fig. 6  Weight change of the vaccinated chickens after challenge 
with H9N2 avian influenza virus. Chickens were immunized with PBS, 
L. lactis, L. lactis HA1, L. lactis HA1-Fc and inactivated H9N2 vaccine. 
10 days after the boost immunization, the immunized chickens were 
challenged with H9N2 influenza virus. The weight loss was recorded 
daily for 2 weeks
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recombinant L. lactis strain of HA1-Fc. The evaluation of 
the immunogenicity and protective efficacy showed that 
the recombinant L. lactis HA1-Fc strain induced sub-
stantial mucosal immunity and systemic immunity and 
had a good protective effect against H9N2 AIV challenge.

For a vaccine to be effective, the vaccine strain must 
have genetic and antigenic characteristics similar to those 
of the currently circulating field viruses. Therefore, it is 
pivotal to select the vaccine strain to prevent the spread 
of the virus. Since the mid-1990s, two different lineages 
of H9N2 AIV, called chicken A/Chicken/Beijing/1/94 and 
quail A/HongKong/G1/98, have been circulating in land 
poultry in Asia. The HA gene of A/pigeon/Hebei/02/2017 
influenza virus was similar to the Ck/BJ/94-like lineage 
[41]. So we exploited a recombinant anti-H9N2 AIV vac-
cine based on this virus.

HA antibody is particularly important in the fight 
against infection and disease and is a crucial target for 
vaccine development [29]. It is reported that vaccines 
derived from HA gene as a protective antigen can induce 
subtype specific immunity and show efficacy against 
challenge with homologous virus [30, 42–44]. The HA1 

domain contains many antigenic determinants that stim-
ulate the production and binding of neutralizing antibod-
ies [45]. Therefore, oral vaccine of recombinant L. lactis 
HA1-Fc was developed using HA1 as the target protein 
in this study, and our data showed that it could induce 
plentiful production of specific antibody. Although vac-
cination with the inactivated vaccine induced high HI 
antibody, no significant differences in HI antibody were 
detected in chickens immunized with inactivated vaccine 
and L. lactis HA1-Fc.

The linked IgY Fc mediated the interaction with mac-
rophages and improved the expression of MHC-II mol-
ecules on macrophages. The upregulation of MHC-II 
promoted APC to present antigenic peptides to CD4+ 
T cells, which drive the activation of naïve T cells and 
obtain the help or regulation from CD4+ effector cells or 
regulatory T cells. So IgY Fc regions stimulates the activa-
tion of macrophages and increases the efficiency of anti-
gen-processing, thereby improving the immune response 
induced by the antigen [20]. Therefore, the recombinant 
L. lactis HA1-Fc was constructed by connecting Fc to 
the target gene HA1 in this experiment, and the results 

Fig. 7  Viral shedding from cloacal and oropharyngeal swabs. Immunized chickens were infected with H9N2 avian influenza virus, cloacal and 
oropharyngeal swabs were collected from challenged chickens on days 2, 4, and 7 post-challenges. Viral titers were detected from oropharyngeal 
swabs collected from challenged chickens on days 2 (A), 4 (B), and 7 (C) post-challenges. Viral titers were detected from cloacal swabs collected 
from challenged chickens on days 2 (D), 4 (E), and 7 (F) post-challenges
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showed that the oral vaccine of recombinant L. lactis 
HA1-Fc stimulated immune response, as evidenced by 
improved specific antibody and sIgA antibodies levels, 
increased lymphocyte proliferation, and increased IL-2, 
IL-4, and IFN-γ levels.

AIV utilize the host respiratory and gastrointestinal 
mucosal surfaces to initiate infections, therefore the ideal 
vaccine should stimulate mucosal and systemic immune 
reactions to restrict virus infection. So delivery of vaccine 
antigens through the mucosal surface would be an ideal 
approach to attain mucosal and possibly systemic immu-
nity. However, mucosal epithelium is a natural barrier 
to a vaccine antigen transmission. On this basis, differ-
ent approaches have been explored to solve this problem. 
FcRn can transport maternal IgG to the newborn via the 
placental path or intestinal [22], numerous reports have 
confirmed that targeting protective antigens to FcRn 
can increased humoral and cellular immune responses 
[23–25]. FcRY, the Fc receptor of avian IgY, was isolated 
from chicken yolk sac in 2004, and has been reported 
to expressed in many other tissues including intestinal 
tract [26]. Therefore, it is believed that FcRY has a simi-
lar transport function to mammalian FcRn, which can 
transport IgY in poultry intestinal tract [27, 28]. So we 
constructed a novel L. lactis HA1-Fc strain expressing a 
recombinant fusion protein consisting of the HA1 pro-
teins and chicken IgY Fc fragment. Our results showed 

that the oral vaccine of recombinant L. lactis HA1-Fc 
showed increased mucosal immunity, as evidenced by 
improved sIgA levels in BALF and intestinal samples. 
The sIgA immunoglobulin is a critical component of the 
mucosal immune system. It can form a protective bar-
rier by attaching to epithelial cells and it also can attach 
to newly synthesized viral proteins in infected cells, 
interfering with the assembly of virus particles. Notably, 
the sIgA level induced by recombinant L. lactis HA1-Fc 
was significantly higher than that induced by inactivated 
vaccine, so the recombinant L. lactis HA1-Fc oral vac-
cine induced higher mucosal immunity. Moreover, the 
probiotic effect of L. lactis promoted cellular response, 
and we also detected an up-regulation of IL-2, IL-4, and 
IFN-γ cytokines which promoted the activation and pro-
liferation of the intestinal mucosal lymphoid B cells and 
induced the secretion of specific sIgA. They participated 
in the transmission of information and played an impor-
tant role in the biological processes of the organisms. 
Our results show that immunization with L. lactis HA1-
Fc can produce higher levels of IL-2, IL-4, and IFN-γ.

After virus challenge, our results showed that recombi-
nant L. lactis HA1-Fc significantly inhibited weight loss, 
histopathological damage and inflammatory response 
in chickens, decreased virus titer in the lung, which 
was consistent with the immune protection of inacti-
vated vaccine. So the recombinant L. lactis HA1-Fc can 

Fig. 8  Protective effect of L. lactis HA1-Fc on lung injury induced by H9N2 influenza virus infection. Seven days after challenge with H9N2 avian 
influenza virus, lung tissue of PBS group (A), L. lactis group (B), L. lactis HA1 group (C), L. lactis HA1-Fc group (D) and H9N2 inactivated vaccine 
(E) was evaluated by histopathological analysis. The sections were stained with H&E. Objective magnification, × 200 (A–E). (F) The virus titers of 
lung samples from vaccinated chickens were obtained at 7 days after challenge and infectivity was measured by EID50. The data were showed as 
means ± SD (n = 5). **P < 0.01 relative to PBS and L. lactis. ##P < 0.01 relative to L. lactis HA1
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produced immune protection in chickens. Moreover, 
virus shedding was detected in oropharyngeal and cloa-
cal swabs in the recombinant L. lactis HA1-Fc immu-
nized chickenes at 2  days after challenge, and the titer 
was low and reduced rapidly to reach undetectable levels 
at 7  days after challenge. These results showed that the 
oral recombinant L. lactis HA1-Fc vaccine in this study 
could significantly inhibit the virus shedding. At present, 
inactivated H9N2 vaccines have demonstrated high effi-
cacy in protecting against clinical disease, but variable 
results have also been observed in reducing the mor-
tality and the level of viral shedding in chickens. It was 
reported that H9N2 AIV causes no death in chicken after 
intranasal challenge in control group [46] and no virus 
shedding in inactivated vaccine vaccination group [47]. 
However, other studies have shown that H9N2 AIV can 
cause death in chicken after intranasal challenge [48–50], 
and intranasal challenge of H9N2 virus resulted in dif-
ferent degrees of virus shedding in the inactivated vac-
cine group [46, 50–52], which was consistent with our 
results. Our previous studies demonstrated that intrave-
nous rather than intranasal challenge of the H9N2 virus 
resulted in an extremely low degree of virus shedding, 
however, in order to mimic the natural route of infec-
tion, intranasal challenge of the H9N2 virus was chosen 
in this study. Indeed, our previous results are in line with 
findings that has been reported, whereby intravenous 
challenge of the H9N2 virus resulted in an extremely low 
degree of virus shedding [49].

Conclusion
This study demonstrates that oral recombinant L. lactis 
HA1-Fc vaccine obtained good immune effect and can be 
used as a candidate vaccine for avian influenza preven-
tion and control to compensate for the functional defi-
ciency of inactivated vaccine.
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